Noisy threshold in neuronal models: connections with the noisy leaky integrate-and-fire model.

نویسندگان

  • G Dumont
  • J Henry
  • C O Tarniceriu
چکیده

Providing an analytical treatment to the stochastic feature of neurons' dynamics is one of the current biggest challenges in mathematical biology. The noisy leaky integrate-and-fire model and its associated Fokker-Planck equation are probably the most popular way to deal with neural variability. Another well-known formalism is the escape-rate model: a model giving the probability that a neuron fires at a certain time knowing the time elapsed since its last action potential. This model leads to a so-called age-structured system, a partial differential equation with non-local boundary condition famous in the field of population dynamics, where the age of a neuron is the amount of time passed by since its previous spike. In this theoretical paper, we investigate the mathematical connection between the two formalisms. We shall derive an integral transform of the solution to the age-structured model into the solution of the Fokker-Planck equation. This integral transform highlights the link between the two stochastic processes. As far as we know, an explicit mathematical correspondence between the two solutions has not been introduced until now.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

Neuronal spike-train responses in the presence of threshold noise.

The variability of neuronal firing has been an intense topic of study for many years. From a modelling perspective it has often been studied in conductance based spiking models with the use of additive or multiplicative noise terms to represent channel fluctuations or the stochastic nature of neurotransmitter release. Here we propose an alternative approach using a simple leaky integrate-and-fi...

متن کامل

Reliability of neuronal information conveyed by unreliable neuristor-based leaky integrate-and-fire neurons: a model study

We conducted simulations on the neuronal behavior of neuristor-based leaky integrate-and-fire (NLIF) neurons. The phase-plane analysis on the NLIF neuron highlights its spiking dynamics--determined by two nullclines conditional on the variables on the plane. Particular emphasis was placed on the operational noise arising from the variability of the threshold switching behavior in the neuron on ...

متن کامل

Neuronal Spike Timing Adaptation Described with a Fractional Leaky Integrate-and-Fire Model

The voltage trace of neuronal activities can follow multiple timescale dynamics that arise from correlated membrane conductances. Such processes can result in power-law behavior in which the membrane voltage cannot be characterized with a single time constant. The emergent effect of these membrane correlations is a non-Markovian process that can be modeled with a fractional derivative. A fracti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of mathematical biology

دوره 73 6-7  شماره 

صفحات  -

تاریخ انتشار 2016